MAYBE 17.712 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ LR

mainModule Main
  ((ceiling :: Float  ->  Int) :: Float  ->  Int)

module Main where
  import qualified Prelude



Lambda Reductions:
The following Lambda expression
\(_,r)→r

is transformed to
r0 (_,r) = r

The following Lambda expression
\(n,_)→n

is transformed to
n0 (n,_) = n

The following Lambda expression
\(_,r)→r

is transformed to
r1 (_,r) = r

The following Lambda expression
\(q,_)→q

is transformed to
q1 (q,_) = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ IFR

mainModule Main
  ((ceiling :: Float  ->  Int) :: Float  ->  Int)

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if r > 0 then n + 1 else n

is transformed to
ceiling0 True = n + 1
ceiling0 False = n

The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero

is transformed to
primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y))
primDivNatS0 x y False = Zero

The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
HASKELL
          ↳ BR

mainModule Main
  ((ceiling :: Float  ->  Int) :: Float  ->  Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.
Binding Reductions:
The bind variable of the following binding Pattern
frac@(Double vz wu)

is replaced by the following term
Double vz wu

The bind variable of the following binding Pattern
frac@(Float wx wy)

is replaced by the following term
Float wx wy



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
HASKELL
              ↳ COR

mainModule Main
  ((ceiling :: Float  ->  Int) :: Float  ->  Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
HASKELL
                  ↳ LetRed

mainModule Main
  ((ceiling :: Float  ->  Int) :: Float  ->  Int)

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
ceiling0 (r > 0)
where 
ceiling0 True = n + 1
ceiling0 False = n
n  = n0 vu8
n0 (n,vw) = n
r  = r0 vu8
r0 (vv,r) = r
vu8  = properFraction x

are unpacked to the following functions on top level
ceilingN0 xx (n,vw) = n

ceilingR0 xx (vv,r) = r

ceilingVu8 xx = properFraction xx

ceilingR xx = ceilingR0 xx (ceilingVu8 xx)

ceilingCeiling0 xx True = ceilingN xx + 1
ceilingCeiling0 xx False = ceilingN xx

ceilingN xx = ceilingN0 xx (ceilingVu8 xx)

The bindings of the following Let/Where expression
(fromIntegral q,r :% y)
where 
q  = q1 vu30
q1 (q,xu) = q
r  = r1 vu30
r1 (xv,r) = r
vu30  = quotRem x y

are unpacked to the following functions on top level
properFractionQ1 xy xz (q,xu) = q

properFractionR1 xy xz (xv,r) = r

properFractionR xy xz = properFractionR1 xy xz (properFractionVu30 xy xz)

properFractionVu30 xy xz = quotRem xy xz

properFractionQ xy xz = properFractionQ1 xy xz (properFractionVu30 xy xz)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
HASKELL
                      ↳ NumRed

mainModule Main
  ((ceiling :: Float  ->  Int) :: Float  ->  Int)

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
HASKELL
                          ↳ Narrow
                          ↳ Narrow

mainModule Main
  (ceiling :: Float  ->  Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(yu300000000), Succ(yu4340000)) → new_primPlusNat(yu300000000, yu4340000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat(Succ(yu4060), Succ(yu3900)) → new_primMinusNat(yu4060, yu3900)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(yu1130)) → new_primMulNat(yu1130)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ DependencyGraphProof
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(yu424, yu425) → new_primDivNatS(yu424, yu425)
new_primDivNatS1(Succ(yu4880), Succ(yu4890), yu490) → new_primDivNatS1(yu4880, yu4890, yu490)
new_primDivNatS00(yu30000, yu31000) → new_primDivNatS00(yu30000, yu31000)
new_primDivNatS03(yu494, yu495, Succ(yu4960), Zero) → new_primDivNatS01(yu494, Succ(yu495))
new_primDivNatS0(Succ(yu30000), Succ(yu31000)) → new_primDivNatS00(yu30000, yu31000)
new_primDivNatS0(Succ(yu30000), Zero) → new_primDivNatS01(yu30000, Zero)
new_primDivNatS0(Zero, Zero) → new_primDivNatS02
new_primDivNatS03(yu494, yu495, Succ(yu4960), Succ(yu4970)) → new_primDivNatS03(yu494, yu495, yu4960, yu4970)
new_primDivNatS03(yu494, yu495, Zero, Zero) → new_primDivNatS01(yu494, Succ(yu495))
new_primDivNatS01(yu424, yu425) → new_primDivNatS(yu424, yu425)
new_primDivNatS02new_primDivNatS1(Zero, Zero, Zero)
new_primDivNatS1(Succ(yu4880), Zero, yu490) → new_primDivNatS2(yu4880, yu490)
new_primDivNatS2(yu451, yu452) → new_primDivNatS0(yu451, yu452)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 9 less nodes.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
QDP
                                      ↳ NonTerminationProof
                                    ↳ QDP
                                    ↳ QDP
                                    ↳ QDP
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS00(yu30000, yu31000) → new_primDivNatS00(yu30000, yu31000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_primDivNatS00(yu30000, yu31000) → new_primDivNatS00(yu30000, yu31000)

The TRS R consists of the following rules:none


s = new_primDivNatS00(yu30000, yu31000) evaluates to t =new_primDivNatS00(yu30000, yu31000)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_primDivNatS00(yu30000, yu31000) to new_primDivNatS00(yu30000, yu31000).





↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
QDP
                                      ↳ NonTerminationProof
                                    ↳ QDP
                                    ↳ QDP
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(yu424, yu425) → new_primDivNatS(yu424, yu425)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_primDivNatS(yu424, yu425) → new_primDivNatS(yu424, yu425)

The TRS R consists of the following rules:none


s = new_primDivNatS(yu424, yu425) evaluates to t =new_primDivNatS(yu424, yu425)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_primDivNatS(yu424, yu425) to new_primDivNatS(yu424, yu425).





↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
QDP
                                      ↳ QDPSizeChangeProof
                                    ↳ QDP
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS1(Succ(yu4880), Succ(yu4890), yu490) → new_primDivNatS1(yu4880, yu4890, yu490)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                    ↳ QDP
QDP
                                      ↳ QDPSizeChangeProof
                          ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS03(yu494, yu495, Succ(yu4960), Succ(yu4970)) → new_primDivNatS03(yu494, yu495, yu4960, yu4970)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


Haskell To QDPs